Reducing Noise

"Signal-to-noise ratio"

- The difference between the signal level and the *noise floor*, specified in dB.
 - 70 dB is ok. 50 dB is poor.
- Noise in mixed tracks adds up! Equal levels in a mix add 3 dB for each track.
- Hardware systems have additive noise.
 Individual hardware has s/n specified.

What do we call noise?

- Anything in a sound that we don't want.
- Hiss from electronics.
- Hum from AC power. Buzz from an instrument amplifier.
- A fan in the background of a film dialog.
- A door slam in an interview.

Best to avoid it altogether

- Minimizing noise on a remote recording/film/ video session
 - First of all notice them, and realize they will seem "louder" when recorded.
 - Get the mics away from the noise source.
 - Physically muffle the noise sources with pads.
 - Get a little bit of just the background noise ahead of time.
 - To use as a sample in noise reduction software.

Best to avoid it altogether

- Minimizing noise on a remote recording/film/ video session
 - Or often record a lot of it, without any dialog.
 - That way you can put it behind any ADR you do later.
 - Or get a mic with it's own track recording only the noise, and no dialog.
 - While the dialog is on another track.
 - Later, align and invert it, in the mix.
 - It helps if you have a clapperboard.

Reducing noise in postproduction

- Perception of noise is relative. People may not notice it if it is simply reduced a bit.
 - How loud does the noise have to be for us to notice it... compared to the desired sound?
 Depends on psychoacoustics.
- Almost all noise reduction techniques require a compromise. Some bad comes with the good.

Cables are a common noise source

- Unbalanced cables pick up noise easily. They use 2 internal connectors.
- Balanced cables reject electromagnetic noise (like AChum) using 3 conductors.
 - Two wires, each carry the same signal. However one copy is flipped out of phase.
 - Receiving hardware will flip that out-of-phase copy back and combine the two copies.
 - Noise that overwhelms the cable shielding will get into both copies equally as much.
 - The receiving hardware flips one copy phase 180 degrees so that the signals now add.
 - But the noise, which was in phase, has one copy now flipped out of phase.
- The noise cancels itself out. The wanted signal is strengthened.

Reducing noise in postproduction

- Masking is a very useful phenomenon. When two sounds are in the same frequency range, we tend to notice only the louder one.
 - So if a splice in one track will be audible, we put that splice "behind" a snare hit in another track.
- We don't notice a little guitar amplifier buzz during the guitar notes.
 - In between the guitar notes is another story. We deal with that.

Common tools

- Try filters? (EQ) They can work for a simple tone noise.
 - But there are too many harmonics in our Buzzing Bass amp example
- Best to use learned/sampled noise reduction.
 - There is Just enough sample noise in Buzz Bass.
- For pops? There are dedicated tools Audacity pop/click removal
 - Set the thresholds and listen, retry until you get it.
- For occasional sound behind the desired sound, as a car honk, Audition/Soundboard have unique tools such as the Healing tool

Remember...

- Most noise reduction tools are not perfect. Many require learned skill.
- Try to get things right when recording in the first place.
- Noise is only a problem if you notice it. Don't work over every track.
- Some noises require multiple passes of the same tool, taking a little more noise with each pass.
- Some noises, like guitar amp noise, require a combination of treatments.

Steady-state noises: fan, hiss

- Manually cut to silence or negatively amplify (Audacity's tool to lower levels)
 - But this often leaves noticeable dropouts.
 - Ironically people might not notice the noise, but do notice the dropouts.
- Use a Gate good for small problems,
 - See the bass guitar and snare tracks that are gated.
 - Also used live for not getting the noise in the first place when recording live
- Use EQ
 - Audacity > Spectrum will sometimes reveals the offending frequency.
 - Note that AC 60 hz harmonics are most often multiples, 60-120-240 Hz
 - Narrow filters are best, as they affect the wanted sound the least.